48 research outputs found

    Colonic bacterial diversity and dysbiosis in active microscopic colitis as compared to chronic diarrhoea and healthy controls: effect of polyethylene glycol after bowel lavage for colonoscopy

    Get PDF
    Faecal microbiome; Microscopic colitis; Polyethylene glycolMicrobioma fecal; Colitis microscópica; PolietilenglicolMicrobioma fecal; Colitis microscòpica; PolietilenglicolBackground Most microbiota studies in microscopic colitis patients are performed after diagnostic colonoscopy without considering the potential effect of colonic lavage. Patients may achieve clinical remission after colonoscopy and it is unknown whether lavage-induced changes play a role. Aim To assess the effect of polyethylene glycol (PEG) colonic lavage on clinical remission rate, microbial diversity, microbial dysbiosis index and specific microbial changes in patients with active microscopic colitis as compared to other diarrhoeal diseases and healthy controls. Methods Fifty-five consecutive patients presenting chronic watery diarrhoea and 12 healthy controls were included. Faecal samples were collected three days before and 30 days after PEG in patients and controls for microbiome analysis. Results Clinical remission was observed in 53% of microscopic colitis patients, and in 32% of non-microscopic colitis patients (p = 0.16). Considering patients with persisting diarrhoea after colonoscopy, 71% of non-microscopic colitis patients had bile acid diarrhoea. Baseline Shannon Index was lower in diarrhoea groups than in healthy controls (p = 0.0025); there were no differences between microscopic colitis, bile-acid diarrhoea and functional diarrhoea. The microbial dysbiosis index was significantly higher in microscopic colitis than in bile acid diarrhoea plus functional diarrhoea (p = 0.0095), but no bacterial species showed a significantly different relative abundance among the diarrheal groups. Conclusions Dysbiosis is a feature in active microscopic colitis, but loss of microbial diversity was similar in all diarrheal groups, suggesting that faecal microbial changes are not due to microscopic colitis itself but associated with stool form. A considerable number of microscopic colitis patients achieved clinical remission after colonoscopy, but we were unable to demonstrate related PEG-induced changes in faecal microbiome

    Up-Regulation of the Nrf2/HO-1 Antioxidant Pathway in Macrophages by an Extract from a New Halophilic Archaea Isolated in Odiel Saltworks

    Get PDF
    The production of reactive oxygen species (ROS) plays an important role in the progression of many inflammatory diseases. The search for antioxidants with the ability for scavenging free radicals from the body cells that reduce oxidative damage is essential to prevent and treat these pathologies. Haloarchaea are extremely halophilic microorganisms that inhabit hypersaline environments, such as saltworks or salt lakes, where they have to tolerate high salinity, and elevated ultraviolet (UV) and infrared radiations. To cope with these extreme conditions, haloarchaea have developed singular mechanisms to maintain an osmotic balance with the medium, and are endowed with unique compounds, not found in other species, with bioactive properties that have not been fully explored. This study aims to assess the potential of haloarchaea as a new source of natural antioxidant and anti-inflammatory agents. A carotenoid-producing haloarchaea was isolated from Odiel Saltworks (OS) and identified on the basis of its 16S rRNA coding gene sequence as a new strain belonging to the genus Haloarcula. The Haloarcula sp. OS acetone extract (HAE) obtained from the biomass contained bacterioruberin and mainly C18 fatty acids, and showed potent antioxidant capacity using ABTS assay. This study further demonstrates, for the first time, that pretreatment with HAE of lipopolysaccharide (LPS)-stimulated macrophages results in a reduction in ROS production, a decrease in the pro-inflammatory cytokines TNF-α and IL-6 levels, and up-regulation of the factor Nrf2 and its target gene heme oxygenase-1 (HO-1), supporting the potential of the HAE as a therapeutic agent in the treatment of oxidative stress-related inflammatory diseases.This research was funded by the Operative FEDER Program-Andalucía 2014-2020 (US-1380844 and UHU-1257518), Spanish Agencia Estatal de Investigación (PID2019-110438RBC22-AEI/FEDER), the Andalusian government (I+D+i-JA-PAIDI-Retos projects 2020-PY20) and the “VII Plan Propio de Investigación y Transferencia” of The University of Seville. The work was partially funded by national funds from Fundação para a Ciência e a Tecnologia (FCT, Portugal) in the scope of the projects UIDB/04565/2020 and UIDP/04565/2020 of the Research Unit iBB-Institute for Bioengineering and Biosciences, and of the project LA/P/0140/2020 of the i4HB-Associate Laboratory Institute for Health and Bioeconomy. P.G.-V acknowledges financial support from the “Margarita Salas” grant for the training of young doctors, University of Huelva

    Risk of gastrointestinal cancer in a symptomatic cohort after a complete colonoscopy: Role of faecal immunochemical test

    Get PDF
    BACKGROUND: Faecal immunochemical test (FIT) has been recommended to assess symptomatic patients for colorectal cancer (CRC) detection. Nevertheless, some conditions could theoretically favour blood originating in proximal areas of the gastrointestinal tract passing through the colon unmetabolized. A positive FIT result could be related to other gastrointestinal cancers (GIC). AIM To assess the risk of GIC detection and related death in FIT-positive symptomatic patients (threshold 10 mu g Hb/g faeces) without CRC. METHODS: Post hoc cohort analysis performed within two prospective diagnostic test studies evaluating the diagnostic accuracy of different FIT analytical systems for CRC and significant colonic lesion detection. Ambulatory patients with gastrointestinal symptoms referred consecutively for colonoscopy from primary and secondary healthcare, underwent a quantitative FIT before undergoing a complete colonoscopy. Patients without CRC were divided into two groups (positive and negative FIT) using the threshold of 10 mu g Hb/g of faeces and data from follow-up were retrieved from electronic medical records of the public hospitals involved in the research. We determined the cumulative risk of GIC, CRC and upper GIC. Hazard rate (HR) was calculated adjusted by age, sex and presence of significant colonic lesion. RESULTS: We included 2709 patients without CRC and a complete baseline colonoscopy, 730 (26.9%) with FIT >= 10 mu gr Hb/gr. During a mean time of 45.5 +/- 20.0 mo, a GIC was detected in 57 (2.1%) patients: An upper GIC in 35 (1.3%) and a CRC in 14 (0.5%). Thirty-six patients (1.3%) died due to GIC: 22 (0.8%) due to an upper GIC and 9 (0.3%) due to CRC. FIT-positive subjects showed a higher CRC risk (HR 3.8, 95%CI: 1.2-11.9) with no differences in GIC (HR 1.5, 95%CI: 0.8-2.7) or upper GIC risk (HR 1.0, 95%CI: 0.5-2.2). Patients with a positive FIT had only an increased risk of CRC-related death (HR 10.8, 95%CI: 2.1-57.1) and GIC-related death (HR 2.2, 95%CI: 1.1-4.3), with no differences in upper GIC-related death (HR 1.4, 95%CI: 0.6-3.3). An upper GIC was detected in 22 (0.8%) patients during the first year. Two variables were independently associated: anaemia (OR 5.6, 95%CI: 2.2-13.9) and age >= 70 years (OR 2.7, 95%CI: 1.1-7.0). CONCLUSION Symptomatic patients without CRC have a moderate risk increase in upper GIC, regardless of the FIT result. Patients with a positive FIT have an increased risk of post-colonoscopy CRC

    Predictive Value of Carcinoembryonic Antigen in Symptomatic Patients without Colorectal Cancer: A Post-Hoc Analysis within the COLONPREDICT Cohort

    Get PDF
    We aimed to assess the risk of cancer in patients with abdominal symptoms after a complete colonoscopy without colorectal cancer (CRC), according to the carcinoembryonic antigen (CEA) concentration, as well as its diagnostic accuracy. For this purpose, we performed a post-hoc analysis within a cohort of 1431 patients from the COLONPREDICT study, prospectively designed to assess the fecal immunochemical test accuracy in detecting CRC. Over 36.5 ± 8.4 months, cancer was detected in 115 (8%) patients. Patients with CEA values higher than 3 ng/mL revealed an increased risk of cancer (HR 2.0, 95% CI 1.3–3.1), CRC (HR 4.4, 95% CI 1.1–17.7) and non-gastrointestinal cancer (HR 1.7, 95% CI 1.0–2.8). A new malignancy was detected in 51 (3.6%) patients during the first year and three variables were independently associated: anemia (OR 2.8, 95% CI 1.3–5.8), rectal bleeding (OR 0.3, 95% CI 0.1–0.7) and CEA level >3 ng/mL (OR 3.4, 95% CI 1.7–7.1). However, CEA was increased only in 31.8% (95% CI, 16.4–52.7%) and 50% (95% CI, 25.4–74.6%) of patients with and without anemia, respectively, who would be diagnosed with cancer during the first year of follow-up. On the basis of this information, CEA should not be used to assist in the triage of patients presenting with lower bowel symptoms who have recently been ruled out a CRCThis work was supported by Spain’s Carlos III Healthcare Institute by means of project PI17/00837 (Co-funded by European Regional Development Fund/European Social Fund “A way to make Europe”/“Investing in your future

    Development and external validation of a faecal immunochemical test-based prediction model for colorectal cancer detection in symptomatic patients

    Get PDF
    Background: Risk prediction models for colorectal cancer (CRC) detection in symptomatic patients based on available biomarkers may improve CRC diagnosis. Our aim was to develop, compare with the NICE referral criteria and externally validate a CRC prediction model, COLONPREDICT, based on clinical and laboratory variables. Methods: This prospective cross-sectional study included consecutive patients with gastrointestinal symptoms referred for colonoscopy between March 2012 and September 2013 in a derivation cohort and between March 2014 and March 2015 in a validation cohort. In the derivation cohort, we assessed symptoms and the NICE referral criteria, and determined levels of faecal haemoglobin and calprotectin, blood haemoglobin, and serum carcinoembryonic antigen before performing an anorectal examination and a colonoscopy. A multivariate logistic regression analysis was used to develop the model with diagnostic accuracy with CRC detection as the main outcome. Results: We included 1572 patients in the derivation cohort and 1481 in the validation cohorts, with a 13.6 % and 9. 1 % CRC prevalence respectively. The final prediction model included 11 variables: age (years) (odds ratio [OR] 1.04, 95 % confidence interval [CI] 1.02-1.06), male gender (OR 2.2, 95 % CI 1.5-3.4), faecal haemoglobin >= 20 mu g/g (OR 17.0, 95 % CI 10.0-28.6), blood haemoglobin = 3 ng/mL (OR 4.5, 95 % CI 3.0-6.8), acetylsalicylic acid treatment (OR 0.4, 95 % CI 0.2-0.7), previous colonoscopy (OR 0.1, 95 % CI 0.06-0.2), rectal mass (OR 14.8, 95 % CI 5.3-41.0), benign anorectal lesion (OR 0.3, 95 % CI 0.2-0.4), rectal bleeding (OR 2.2, 95 % CI 1.4-3.4) and change in bowel habit (OR 1.7, 95 % CI 1.1-2.5). The area under the curve (AUC) was 0.92 (95 % CI 0.91-0.94), higher than the NICE referral criteria (AUC 0.59, 95 % CI 0.55-0.63; p < 0.001). On the basis of the thresholds with 90 % (5.6) and 99 % (3.5) sensitivity, we divided the derivation cohort into three risk groups for CRC detection: high (30.9 % of the cohort, positive predictive value [PPV] 40.7 %, 95 % CI 36.7-45.9 %), intermediate (29.5 %, PPV 4.4 %, 95 % CI 2.8-6.8 %) and low (39.5 %, PPV 0.2 %, 95 % CI 0.0-1.1 %). The discriminatory ability was equivalent in the validation cohort (AUC 0.92, 95 % CI 0.90-0.94; p = 0.7). Conclusions: COLONPREDICT is a highly accurate prediction model for CRC detection.This study was funded by a grant from Instituto de Salud Carlos III (PI11/00094). JC and VH have received an intensification grant through the European Commission funded "BIOCAPS" project (FP-7-REGPOT 2012-2013-1, Grant agreement no. FP7-316265). The validation cohort recruitment was funded by a grant from Fundacio de la Marato TV3 2012 (785/U/2013). The funding institutions had no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the article for publication

    Case-control study for colorectal cancer genetic susceptibility in EPICOLON: previously identified variants and mucins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Colorectal cancer (CRC) is the second leading cause of cancer death in developed countries. Familial aggregation in CRC is also important outside syndromic forms and, in this case, a polygenic model with several common low-penetrance alleles contributing to CRC genetic predisposition could be hypothesized. Mucins and GALNTs (N-acetylgalactosaminyltransferase) are interesting candidates for CRC genetic susceptibility and have not been previously evaluated. We present results for ten genetic variants linked to CRC risk in previous studies (previously identified category) and 18 selected variants from the mucin gene family in a case-control association study from the Spanish EPICOLON consortium.</p> <p>Methods</p> <p>CRC cases and matched controls were from EPICOLON, a prospective, multicenter, nationwide Spanish initiative, comprised of two independent stages. Stage 1 corresponded to 515 CRC cases and 515 controls, whereas stage 2 consisted of 901 CRC cases and 909 controls. Also, an independent cohort of 549 CRC cases and 599 controls outside EPICOLON was available for additional replication. Genotyping was performed for ten previously identified SNPs in <it>ADH1C</it>, <it>APC</it>, <it>CCDN1</it>, <it>IL6</it>, <it>IL8</it>, <it>IRS1</it>, <it>MTHFR</it>, <it>PPARG</it>, <it>VDR </it>and <it>ARL11</it>, and 18 selected variants in the mucin gene family.</p> <p>Results</p> <p>None of the 28 SNPs analyzed in our study was found to be associated with CRC risk. Although four SNPs were significant with a <it>P</it>-value < 0.05 in EPICOLON stage 1 [rs698 in <it>ADH1C </it>(OR = 1.63, 95% CI = 1.06-2.50, <it>P</it>-value = 0.02, recessive), rs1800795 in <it>IL6 </it>(OR = 1.62, 95% CI = 1.10-2.37, <it>P</it>-value = 0.01, recessive), rs3803185 in <it>ARL11 </it>(OR = 1.58, 95% CI = 1.17-2.15, <it>P</it>-value = 0.007, codominant), and rs2102302 in <it>GALNTL2 </it>(OR = 1.20, 95% CI = 1.00-1.44, <it>P</it>-value = 0.04, log-additive 0, 1, 2 alleles], only rs3803185 achieved statistical significance in EPICOLON stage 2 (OR = 1.34, 95% CI = 1.06-1.69, <it>P</it>-value = 0.01, recessive). In the joint analysis for both stages, results were only significant for rs3803185 (OR = 1.12, 95% CI = 1.00-1.25, <it>P</it>-value = 0.04, log-additive 0, 1, 2 alleles) and borderline significant for rs698 and rs2102302. The rs3803185 variant was not significantly associated with CRC risk in an external cohort (MCC-Spain), but it still showed some borderline significance in the pooled analysis of both cohorts (OR = 1.08, 95% CI = 0.98-1.18, <it>P</it>-value = 0.09, log-additive 0, 1, 2 alleles).</p> <p>Conclusions</p> <p><it>ARL11</it>, <it>ADH1C</it>, <it>GALNTL2 </it>and <it>IL6 </it>genetic variants may have an effect on CRC risk. Further validation and meta-analyses should be undertaken in larger CRC studies.</p

    Phenotypical, Clinical, and Molecular Aspects of Adults and Children With Homozygous Familial Hypercholesterolemia in Iberoamerica

    Get PDF
    Fil: Alves, Ana Catarina. Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa; Portugal.Fil: Alonso, Rodrigo. Center for Advanced Metabolic Medicine and Nutrition, Santiago; Chile.Fil: Diaz-Diaz, José Luís. Hospital Universitario A Coruña. Department of Internal Medicine; España.Fil: Medeiros, Ana Margarida. Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa; Portugal.Fil: Jannes, Cinthia E. University of São Paulo. Medical School. Hospital São Paulo. Heart Institute (InCor); Brasil.Fil: Merchan, Alonso. Fundación Clinica SHAIO, Cardiología, Bogotá; Colombia.Fil: Vasques-Cardenas, Norma A. Universidad Autónoma de Guadalajara. Facultad de Medicina Zapopan; México.Fil: Cuevas, Ada. Center for Advanced Metabolic Medicine and Nutrition, Santiago; Chile.Fil: Chacra, Ana Paula. University of São Paulo. Medical School. Hospital São Paulo. Heart Institute (InCor); Brasil.Fil: Krieger, Jose E. University of São Paulo. Medical School. Hospital São Paulo. Heart Institute (InCor); Brasil.Fil: Arroyo, Raquel. Fundación Hipercolesterolemia Familiar, Madrid; España.Fil: Arrieta, Francisco. Hospital Ramón y Cajal. Departamento de Endocrinología, Madrid; España.Fil: Schreier, Laura. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Bioquímica Clínica, Laboratorio de Lípidos y Aterosclerosis; Argentina.Fil: Corral, Pablo. Universidad FASTA. Facultad de Medicina. Cátedra Farmacología e Investigación, Mar del Plata; Argentina.Fil: Bañares, Virginia. ANLIS Dr.C.G.Malbrán. Centro Nacional de Genética Médica. Departamento de Genética Experimental; Argentina.Fil: Araujo, Maria B. Hospital Garrahan. Servicio de Nutrición; Argentina.Fil: Bustos, Paula. Universidad de Concepción. Facultad de Farmacia; Chile.Fil: Asenjo, Sylvia. Universidad de Concepción. Facultad de Medicina; Chile.Fil: Stoll, Mario. Programa GENYCO, Laboratorio de Genética Molecular. Comisión Honoraria de Salud Cardiovascular, Montevideo; Uruguay.Fil: Dell'Oca, Nicolás. Programa GENYCO, Laboratorio de Genética Molecular. Comisión Honoraria de Salud Cardiovascular, Montevideo; Uruguay.Fil: Reyes, Maria. Fundación Cardiovascular de Colombia. Cardiología; Bogotá.Fil: Ressia, Andrés. Fundación Cardiovascular de Colombia. Cardiología; Bogotá.Fil: Campo, Rafael. Instituto Mexicano del Seguro Social. Centro de Investigación Biomédica del Occidente, Guadalajara; México.Fil: Magaña-Torres, Maria T. Instituto Nacional de Ciencias Médicas y Nutrición. Unidad de Investigación de Enfermedades Metabólicas; México.Fil: Metha, Roopa. Instituto Nacional de Ciencias Médicas y Nutrición. Unidad de Investigación de Enfermedades Metabólicas; México.Fil: Aguilar-Salinas, Carlos A. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Departamento de Endocrinología y Metabolismo. Secretaría de la Defensa Nacional. Unidad de Especialidades Médicas. Servicio de Endocrinología; México.Fil: Ceballos-Macias, José J. Pontificia Universidad Javerina. Facultad de Medicina. Departamento de Medicina Interna, Bogotá; Colombia.Fil: Ruiz Morales, Álvaro J. Pontificia Universidad Javerina. Facultad de Medicina. Departamento de Medicina Interna, Bogotá; Colombia.Fil: Mata, Pedro. Fundación Hipercolesterolemia Familiar, Madrid; España.Fil: Bourbon, Mafalda. Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa; Portugal.Fil: Santos, Raul D. University of São Paulo. Medical School. Hospital São Paulo. Heart Institute (InCor); Brasil.OBJECTIVE: Characterize homozygous familial hypercholesterolemia (HoFH) individuals from Iberoamerica. APPROACH AND RESULTS: In a cross-sectional retrospective evaluation 134 individuals with a HoFH phenotype, 71 adults (age 39.3±15.8 years, 38.0% males), and 63 children (age 8.8±4.0 years, 50.8% males) were studied. Genetic characterization was available in 129 (96%). The majority (91%) were true homozygotes (true HoFH, n=79, 43.0% children, 46.8% males) or compound heterozygotes (compound heterozygous familial hypercholesterolemia, n=39, 51.3% children, 46.2% males) with putative pathogenic variants in the LDLR. True HoFH due to LDLR variants had higher total (P=0.015) and LDL (low-density lipoprotein)-cholesterol (P=0.008) compared with compound heterozygous familial hypercholesterolemia. Children with true HoFH (n=34) tended to be diagnosed earlier (P=0.051) and had a greater frequency of xanthomas (P=0.016) than those with compound heterozygous familial hypercholesterolemia (n=20). Previous major cardiovascular events were present in 25 (48%) of 52 children (missing information in 2 cases), and in 43 (67%) of 64 adults with LDLR variants. Children who are true HoFH had higher frequency of major cardiovascular events (P=0.02), coronary heart (P=0.013), and aortic/supra-aortic valve diseases (P=0.022) than compound heterozygous familial hypercholesterolemia. In adults, no differences were observed in major cardiovascular events according to type of LDLR variant. From 118 subjects with LDLR variants, 76 (64%) had 2 likely pathogenic or pathogenic variants. In 89 subjects with 2 LDLR variants, those with at least one null allele were younger (P=0.003) and had a greater frequency of major cardiovascular events (P=0.038) occurring at an earlier age (P=0.001). CONCLUSIONS: There was a high frequency of cardiovascular disease even in children. Phenotype and cardiovascular complications were heterogeneous and associated with the type of molecular defect

    Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study

    Get PDF
    Background: Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods: For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings: Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8-13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05-6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50-75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation: Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life

    Alcohol-related liver disease phenotype impacts survival after an acute variceal bleeding episode

    Get PDF
    [Background & Aims] Alcohol-related hepatitis (AH) encompasses a high mortality. AH might be a concomitant event in patients with acute variceal bleeding (AVB). The current study aimed to assess the prevalence of AH in patients with AVB and to compare the clinical outcomes of AH patients to other alcohol-related liver disease (ALD) phenotypes and viral cirrhosis.[Methods] Multicentre, observational study including 916 patients with AVB falling under the next categories: AH (n = 99), ALD cirrhosis actively drinking (d-ALD) (n = 285), ALD cirrhosis abstinent from alcohol (a-ALD) (n = 227) and viral cirrhosis (n = 305). We used a Cox proportional hazards model to calculate adjusted hazard ratio (HR) of death adjusted by MELD.[Results] The prevalence of AH was 16% considering only ALD patients. AH patients exhibited more complications. Forty-two days transplant-free survival was worse among AH, but statistical differences were only observed between AH and d-ALD groups (84 vs. 93%; p = 0.005), when adjusted by MELD no differences were observed between AH and the other groups. At one-year, survival of AH patients (72.7%) was similar to the other groups; when adjusted by MELD mortality HR was better in AH compared to a-ALD (0.48; 0.29–0.8, p = 0.004). Finally, active drinkers who remained abstinent presented better survival, independently of having AH.[Conclusions] Contrary to expected, AH patients with AVB present no worse one-year survival than other patients with different alcohol-related phenotypes or viral cirrhosis. Abstinence influences long-term survival and could explain these counterintuitive results.Meritxell Ventura-Cots is a recipient of Juan Rodés grant from the Instituto de Salud Carlos III (ISCIII), Joan Genescà is a recipient of grants PI18/00947 and PI21/00691 from ISCIII.Peer reviewe

    Familial hypercholesterolaemia in children and adolescents from 48 countries : a cross-sectional study

    Get PDF
    Background: Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods: For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings: Of 63093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11848 individuals. Median age at registry entry was 9·6 years (IQR 5·8–13·2). 10 099 (89·9%) of 11235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05–6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50–75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation: Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life.peer-reviewe
    corecore